Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Rep Med ; 5(3): 101472, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508140

RESUMO

Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Transdução de Sinais , Adulto , Criança , Humanos , Transdução de Sinais/genética , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Fator de Transcrição STAT3/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-37937078

RESUMO

Introduction: Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, cytopenias, and dysplasia. The gene encoding ten-eleven translocation 2 (tet2), a dioxygenase enzyme that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, is a recurrently mutated tumor suppressor gene in MDS and other myeloid malignancies. Previously, we reported a stable zebrafish line with a loss-of-function mutation in the tet2 gene. The tet2m/m-mutant zebrafish developed a pre-MDS state with kidney marrow dysplasia, but normal circulating blood counts by 11 months of age and accompanying anemia, signifying the onset of MDS, by 24 months of age. Methods: In the current study, we collected progenitor cells from the kidney marrows of the adult tet2m/m and tet2wt/wt fish at 4 and 15 months of age and conducted enhanced reduced representation of bisulfite sequencing (ERRBS) and bulk RNA-seq to measure changes in DNA methylation and gene expression of hematopoietic stem and progenitor cells (HSPCs). Results and discussion: A global increase in DNA methylation of gene promoter regions and CpG islands was observed in tet2m/m HSPCs at 4 months of age when compared with the wild type. Furthermore, hypermethylated genes were significantly enriched for targets of SUZ12 and the metal-response-element-binding transcription factor 2 (MTF2)-involved in the polycomb repressive complex 2 (PRC2). However, between 4 and 15 months of age, we observed a paradoxical global decrease in DNA methylation in tet2m/m HSPCs. Gene expression analyses identified upregulation of genes associated with mTORC1 signaling and interferon gamma and alpha responses in tet2m/m HSPCs at 4 months of age when compared with the wild type. Downregulated genes in HSPCs of tet2-mutant fish at 4 months of age were enriched for cell cycle regulation, heme metabolism, and interleukin 2 (IL2)/signal transducer and activator of transcription 5 (STAT5) signaling, possibly related to increased self-renewal and clonal advantage in HSPCs with tet2 loss of function. Finally, there was an overall inverse correlation between overall increased promoter methylation and gene expression.

3.
J Endod ; 49(7): 836-845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182792

RESUMO

INTRODUCTION: Concentrated growth factor (CGF) is the third-generation platelet concentrate product. This study aimed to evaluate whether the use of CGF during endodontic microsurgery had a positive influence on surgical outcomes. METHODS: Fifty-four patients who underwent endodontic microsurgery from January 2017 to November 2021 were enrolled. They were assigned to the CGF and the control groups according to whether CGF was used during the surgery and followed up at 6, 12, and 18 months after surgery. Preoperative classification of the cases and follow-up radiographic outcomes were based on Kim's classification and Molven's criteria, respectively, and evaluated by 2 calibrated endodontists. The Student t test and χ2 test were used to assess the baseline of 2 groups. Rank sum test was used to determine whether CGF had an impact on the surgical outcome. RESULTS: Thirty-one patients (41 periapical lesion sites) were included in the CGF group, and 23 patients (26 periapical lesion sites) were included in the control group. The overall success rate of endodontic microsurgery was greater than 90%. The baseline of the 2 groups had no difference (P < .05). In the CGF group, the success rate was always 100% in 3 follow-ups, whereas the success rate was 84.2%, 92.8%, and 90%, respectively, in the control group. The success rate between the CGF group and the control group was statistically significant in all 3 follow-up points (P < .05). CONCLUSIONS: The application of CGF during endodontic microsurgery might have a positive influence on surgical outcomes, thus, its prognosis. However, higher-grade evidence is needed to demonstrate its role.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Microcirurgia , Humanos , Resultado do Tratamento , Estudos Transversais , Prognóstico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
4.
Br J Haematol ; 201(3): 489-501, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746437

RESUMO

TET2 inactivating mutations serve as initiating genetic lesions in the transformation of haematopoietic stem and progenitor cells (HSPCs). In this study, we analysed known drugs in zebrafish embryos for their ability to selectively kill tet2-mutant HSPCs in vivo. We found that the exportin 1 (XPO1) inhibitors, selinexor and eltanexor, selectively kill tet2-mutant HSPCs. In serial replating colony assays, these small molecules were selectively active in killing murine Tet2-deficient Lineage-, Sca1+, Kit+ (LSK) cells, and also TET2-inactivated human acute myeloid leukaemia (AML) cells. Selective killing of TET2-mutant HSPCs and human AML cells by these inhibitors was due to increased levels of apoptosis, without evidence of DNA damage based on increased γH2AX expression. The finding that TET2 loss renders HSPCs and AML cells selectively susceptible to cell death induced by XPO1 inhibitors provides preclinical evidence of the selective activity of these drugs, justifying further clinical studies of these small molecules for the treatment of TET2-mutant haematopoietic malignancies, and to suppress clonal expansion in age-related TET2-mutant clonal haematopoiesis.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Peixe-Zebra , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo
6.
Sci Adv ; 7(43): eabe0834, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669465

RESUMO

Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that collaborate with MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation. Here, we show that when MYCN-amplified neuroblastoma cells are treated with retinoic acid, histone H3K27 acetylation and methylation become redistributed to decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of MEIS1 and SOX4 expression. These findings indicate that treatment with retinoids can reprogram the enhancer landscape, resulting in down-regulation of MYCN expression, while establishing a new retino-sympathetic CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids in high-risk neuroblastoma and explain the rapid down-regulation of expression of MYCN despite massive levels of amplification of this gene.

7.
Oncogene ; 40(38): 5718-5729, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331013

RESUMO

Melanomas driven by loss of the NF1 tumor suppressor have a high risk of treatment failure and effective therapies have not been developed. Here we show that loss-of-function mutations of nf1 and pten result in aggressive melanomas in zebrafish, representing the first animal model of NF1-mutant melanomas harboring PTEN loss. MEK or PI3K inhibitors show little activity when given alone due to cross-talk between the pathways, and high toxicity when given together. The mTOR inhibitors, sirolimus, everolimus, and temsirolimus, were the most active single agents tested, potently induced tumor-suppressive autophagy, but not apoptosis. Because addition of the BCL2 inhibitor venetoclax resulted in compensatory upregulation of MCL1, we established a three-drug combination composed of sirolimus, venetoclax, and the MCL1 inhibitor S63845. This well-tolerated drug combination potently and synergistically induces apoptosis in both zebrafish and human NF1/PTEN-deficient melanoma cells, providing preclinical evidence justifying an early-stage clinical trial in patients with NF1/PTEN-deficient melanoma.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Inibidores de MTOR/administração & dosagem , Melanoma/tratamento farmacológico , Neurofibromina 1/genética , PTEN Fosfo-Hidrolase/genética , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Everolimo/administração & dosagem , Everolimo/farmacologia , Humanos , Mutação com Perda de Função , Inibidores de MTOR/farmacologia , Melanoma/genética , Melanoma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33972797

RESUMO

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Cancer Res ; 81(11): 2995-3007, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602789

RESUMO

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Medula Óssea/secundário , Deleção Cromossômica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas do Tecido Nervoso/deficiência , Neuroblastoma/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
10.
Dis Model Mech ; 13(8)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32651197

RESUMO

Polycomb repressive complex 2 (PRC2) is an epigenetic regulator of gene expression that possesses histone methyltransferase activity. PRC2 trimethylates lysine 27 of histone H3 proteins (H3K27me3) as a chromatin modification associated with repressed transcription of genes frequently involved in cell proliferation or self-renewal. Loss-of-function mutations in the PRC2 core subunit SUZ12 have been identified in a variety of tumors, including malignant peripheral nerve sheath tumors (MPNSTs). To determine the consequences of SUZ12 loss in the pathogenesis of MPNST and other cancers, we used CRISPR-Cas9 to disrupt the open reading frame of each of two orthologous suz12 genes in zebrafish: suz12a and suz12b We generated these knockout alleles in the germline of our previously described p53 (also known as tp53)- and nf1-deficient zebrafish model of MPNSTs. Loss of suz12 significantly accelerated the onset and increased the penetrance of MPNSTs compared to that in control zebrafish. Moreover, in suz12-deficient zebrafish, we detected additional types of tumors besides MPNSTs, including leukemia with histological characteristics of lymphoid malignancies, soft tissue sarcoma and pancreatic adenocarcinoma, which were not detected in p53/nf1-deficient control fish, and are also contained in the human spectrum of SUZ12-deficient malignancies identified in the AACR Genie database. The suz12-knockout tumors displayed reduced or abolished H3K27me3 epigenetic marks and upregulation of gene sets reported to be targeted by PRC2. Thus, these zebrafish lines with inactivation of suz12 in combination with loss of p53/nf1 provide a model of human MPNSTs and multiple other tumor types, which will be useful for mechanistic studies of molecular pathogenesis and targeted therapy with small molecule inhibitors.


Assuntos
Transformação Celular Neoplásica/genética , Inativação Gênica , Neurofibromina 1/genética , Neurofibrossarcoma/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Neurofibromina 1/deficiência , Neurofibrossarcoma/tratamento farmacológico , Neurofibrossarcoma/metabolismo , Neurofibrossarcoma/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia , Transdução de Sinais , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Proteína Supressora de Tumor p53/deficiência , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência
11.
Leukemia ; 34(11): 2992-3006, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32572188

RESUMO

Inactivating mutations in TET2 serve as an initiating genetic lesion in the transformation of hematopoietic stem and progenitor cells (HSPCs). Thus, effective therapy for this subset of patients would ideally include drugs that are selectively lethal in TET2-mutant HSPCs, at dosages that spare normal HSPCs. In this study, we tested 129 FDA-approved anticancer drugs in a tet2-deficient zebrafish model and showed that topoisomerase 1 (TOP1)-targeted drugs and PARP1 inhibitors selectively kill tet2-mutant HSPCs. We found that Tet2-deficient murine bone marrow progenitors and CRISPR-Cas9-induced TET2-mutant human AML cells were more sensitive to both classes of drugs compared with matched control cells. The mechanism underlying the selective killing of TET2-mutant blood cells by these drugs was due to aberrantly low levels of tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that is important for removing TOP1 cleavage complexes (TOP1cc). Low TDP1 levels yield sensitivity to TOP1-targeted drugs or PARP1 inhibitors and an inability to remove TOP1 cleavage complexes, leading to DNA double-strand breaks and cell death. The finding that TET2 mutations render HSPCs uniquely vulnerable to disruption of TOP1 and PARP1 activity may therefore represent a unique opportunity to use relatively low dosages of these drugs for the "precision therapy" of TET2-mutant myeloid malignancies.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Mutações Sintéticas Letais , Inibidores da Topoisomerase I/farmacologia , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dioxigenases , Genótipo , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Topotecan/farmacologia , Peixe-Zebra
12.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315619

RESUMO

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Assuntos
Proteína Fosfatase 2/metabolismo , Apoptose , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ativadores de Enzimas/metabolismo , Fase G1 , Humanos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Fenotiazinas/farmacologia , Fosforilação , Proteína Fosfatase 2/fisiologia , Subunidades Proteicas/metabolismo , Transativadores/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
13.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251410

RESUMO

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Ensaios de Seleção de Medicamentos Antitumorais , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacocinética , Proteômica , Ratos , Relação Estrutura-Atividade , Peixe-Zebra , Neoplasias Pancreáticas
14.
Zebrafish ; 16(4): 421-426, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063042

RESUMO

In July 2018, the 11th Zebrafish Disease Models Conference (ZDM11) was held at Leiden University, The Netherlands, providing an excellent international opportunity for scientific presentations and collaborative discussion regarding the modeling of disease using zebrafish. Much like the original ZDM1, which was also hosted in Leiden in 2007, immunology and cancer had a strong presence at ZDM11, with zebrafish still proving an invaluable tool to interrogate their disease genetics and progression in vivo. In addition, ZDM11 built upon the inclusion and development of other key areas making use of zebrafish disease models, with sessions on neuroscience, behavior, muscle, skeletal and cardiac disease, and more. ZDM11 also highlighted the rapid progression and application of new and exciting technologies to assist in the generation and analysis of zebrafish disease models, including Crispr/Cas9 gene targeting tools, electroporation techniques, computational analysis, drug screening pipelines, and advances in vivo imaging such as high-resolution correlative electron microscopy and lightsheet microscopy. Here, we provide a summary of the ZDM11 conference proceedings, giving an overview of the stimulating science presented across 4 days and 13 conference sessions.


Assuntos
Doenças dos Peixes , Peixe-Zebra , Animais , Congressos como Assunto , Modelos Animais de Doenças , Doenças dos Peixes/etiologia , Doenças dos Peixes/imunologia , Neoplasias/etiologia , Países Baixos
15.
PLoS Genet ; 15(4): e1008039, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30970016

RESUMO

The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development.


Assuntos
Sarcoma Experimental/etiologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X/deficiência , Proteína Nuclear Ligada ao X/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/metabolismo , Modelos Animais de Doenças , Eritropoese , Feminino , Técnicas de Inativação de Genes , Globinas/genética , Humanos , Mutação com Perda de Função , Masculino , Neurofibromina 1/deficiência , Neurofibromina 1/genética , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Homeostase do Telômero/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Cancer Res ; 79(9): 2136-2151, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862716

RESUMO

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.


Assuntos
Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Peixe-Zebra/metabolismo , Animais , Metabolismo Energético , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Metabolômica , Fator de Transcrição Associado à Microftalmia/genética , Transcriptoma , Células Tumorais Cultivadas , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Nat Genet ; 50(9): 1240-1246, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127528

RESUMO

Childhood high-risk neuroblastomas with MYCN gene amplification are difficult to treat effectively1. This has focused attention on tumor-specific gene dependencies that underlie tumorigenesis and thus provide valuable targets for the development of novel therapeutics. Using unbiased genome-scale CRISPR-Cas9 approaches to detect genes involved in tumor cell growth and survival2-6, we identified 147 candidate gene dependencies selective for MYCN-amplified neuroblastoma cell lines, compared to over 300 other human cancer cell lines. We then used genome-wide chromatin-immunoprecipitation coupled to high-throughput sequencing analysis to demonstrate that a small number of essential transcription factors-MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2-are members of the transcriptional core regulatory circuitry (CRC) that maintains cell state in MYCN-amplified neuroblastoma. To disable the CRC, we tested a combination of BRD4 and CDK7 inhibitors, which act synergistically, in vitro and in vivo, with rapid downregulation of CRC transcription factor gene expression. This study defines a set of critical dependency genes in MYCN-amplified neuroblastoma that are essential for cell state and survival in this tumor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Amplificação de Genes , Humanos , Camundongos , Camundongos Nus , Fatores de Transcrição/genética
19.
J Exp Med ; 215(7): 1929-1945, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29941549

RESUMO

A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.


Assuntos
Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pré-Escolar , Dexametasona/farmacologia , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Lactente , Camundongos , Mutagênese Insercional/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Timócitos/efeitos dos fármacos , Timócitos/metabolismo , Resultado do Tratamento , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
20.
Cancer Discov ; 8(3): 320-335, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284669

RESUMO

The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric neuroblastomas. Here, we show that the family member MYC is a potent transforming gene in a separate subset of high-risk neuroblastoma cases (∼10%), based on (i) its upregulation by focal enhancer amplification or genomic rearrangements leading to enhancer hijacking, and (ii) its ability to transform neuroblastoma precursor cells in a transgenic animal model. The aberrant regulatory elements associated with oncogenic MYC activation include focally amplified distal enhancers and translocation of highly active enhancers from other genes to within topologically associating domains containing the MYC gene locus. The clinical outcome for patients with high levels of MYC expression is virtually identical to that of patients with amplification of the MYCN gene, a known high-risk feature of this disease. Together, these findings establish MYC as a bona fide oncogene in a clinically significant group of high-risk childhood neuroblastomas.Significance: Amplification of the MYCN oncogene is a recognized hallmark of high-risk pediatric neuroblastoma. Here, we demonstrate that MYC is also activated as a potent oncogene in a distinct subset of neuroblastoma cases through either focal amplification of distal enhancers or enhancer hijacking mediated by chromosomal translocation. Cancer Discov; 8(3); 320-35. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 253.


Assuntos
Elementos Facilitadores Genéticos , Neuroblastoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Criança , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Luminescentes/genética , Proteína Proto-Oncogênica N-Myc/genética , Neoplasias Experimentais/genética , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Análise de Sobrevida , Translocação Genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...